
Calculation of Efficiencies, etc, from Beam-Scanning Data 
 
With the goal of eventually reaching an agreed procedure that can be used throughout ALMA, I 
have written out the expressions that I used to calculate the efficiencies and other parameters, 
such as the position of the centre of curvature, in a recent look at the data produced by the NSI 
scanner at the NA FEIC.   

I will only treat the case where we are working with complex far-field data, i.e. I am assuming 
that the conversion from the measurement plane to the far-field has already been done and any 
corrections needed, e.g. for the probe pattern, have been applied. 

I note that we are really concerned with the field at the subreflector, rather than the far-field.  
The receiver to subreflector distance is about 12 times the Rayleigh distance for Band 3 so 
using the far-field is a good approximation.  If we ever build Band 1 then the fields at the 
subreflector distance ought to be calculated explicitly. 

A second approximation is that I have assumed that the propagation is paraxial – i.e. that the 
directions of propagation, u and v are sufficiently small that we can write sin(u) = u, etc.  I have 
not estimated the errors that might arise from making this approximation, but I would expect 
them to be small given that the edge of the subreflector is at only 3.58 degrees off-axis.  The 
data I received was on a uniform grid labelled with what are called the X and Y in degrees.  
Since the natural units for the output from an Fourier Transform are sin(u) and sin(v), I assume 
that the data has been interpolated, but I haven’t looked into the details of that.  My feeling is 
that it would really be better to work with the values coming straight out of the Fourier transform 
rather than have this interpolation step in the processing.  One could then do things a bit more 
carefully and avoid this approximation. 

I also assume that the scan is made in a plane perpendicular to the telescope’s z-axis and that 
the axes of the scan have been set up so that they coincide with the x- and y-axes of the 
telescope.  If this has been done correctly then we can assess whether the beam is 
propagating in the right direction to illuminate the subreflector correctly.  Any alignment errors in 
setting up the scanner will of course be reflected in the results. 

The final assumption is that the centre point of the scan has been chosen such that if we were 
measuring a point source at the nominal position of the beam waist, then the phase measured 
in the far field would be uniform, i.e. the reference phase centre is at the point (0,0,0).  Since 
the scan is not in fact made in the focal plane, but nominally at z = 200 mm, some corrections 
are needed.  In the data that I have at present it appears that this is not being done right in all 
cases and this is something that we need to sort out, but obviously I will give the expressions 
that I think apply for the case where the referencing is correct. 

I have written the expression as if we had array of complex values E(u,v).  In fact the data from 
the NSI scans comes in the form of “amplitude” in dB’s, i.e. A = 20log10(|E|), and phase φ in 
degrees, so we first form |E| = 10 A/20. 

The processing steps are then: 

1) Find the fraction of the power on the subreflector: 

 Eta_spill-over =  Σsec |E|2  /  Σall |E|2 

where Σsec, is the sum over data points for which r < rs where r2 = u1
2 + v1

2 with u1 = u – u0 and 
v1 = v – v0,  rs is the radius of the subreflector, 3.58 degrees, and the Σall is the sum over all data 
points.   

There are a couple of choices to be made here.  First should (u0, v0) be the peak of the beam, 
the point that gives the maximum efficiency, or the nominal direction corresponding to the 
centre of the subreflector?  Since we cannot in fact move the subreflector or realign the 
receiver, I think that we should use the nominal direction.  This means that most of the loss that 
arises due to any miss-pointing of the receiver will be included in the spill-over loss.  I realize 
that at present there is a separate item in the requirements that allows 2% loss for 



misalignment, but from the point of view of sensitivity it doesn’t matter what the origin of the 
loss is.  In fact there is a separate reason why the alignment (the “pointing” of the receiver) 
needs to be good:  if the beam is not well centred, there will be an asymmetry in the illumination 
which in turn causes a linear phase error across the beam on the sky.  Recall that the 
(complex) beam on the sky is, to a good approximation the Fourier transform of the field on the 
subreflector.  According to the derivative theorem of FT’s the slopes of the imaginary part of the 
beam are proportional to the first moments of the field on the subreflector.  The relevant 
parameters therefore are the moments of the amplitude distribution on the subreflector (actually 
these moments should really be complex quantities but, for the reasonably flat wave-fronts that 
we should have here, I think this can be ignored): 

 Mu =  Σsec u1 |E| / Σsec |E|  and  Mv =  Σsec v1 |E| / Σsec |E|   

These should be calculated.  We need to do some sums to see what an appropriate limit on 
these values should be.  It will presumably be some smallish fraction of the subreflector radius.  
Note that, since the moments are only calculated for the part of the field that actually falls on 
the subreflector, they will actually move a good deal less than the centroid of the whole beam 
does when there is an error in the receiver alignment. 

A second point is the definition of Σall.  Should this really include the whole data set right out to 
the Nyquist angles or something smaller?  I think this depends on the quality of the data.  
Clearly the region over which the data is summed should not extend out into the area where the 
measurement noise dominates.  For example the data sets we are working with contain 
spurious features due to the backlash on alternate rows.  It would not be helpful to include 
those.  On the other hand we do want to include all the energy that is in the beam – there could 
be significant contributions from sidelobes that are some way out and we do not want to miss 
those.  If one does use a cut-off then I guess that should be stated.  I have taken the full pattern 
provided, but that was in fact limited to a square 20 degrees by 20 degrees. 

Finally, we should really do better than simply including or rejecting points that are inside or 
outside the circle representing the edge of the subreflector.  I have in fact implemented a mask 
m with m = 1 for r < rs – δ/2, m = 0 for r > rs – δ/2  and m = 0.5 + (rs – r) / δ otherwise, i.e. a 
linear taper for points within δ/2 of the edge.  One can then set δ to be equal to a little larger 
than the grid spacing.  (I used a factor of 1.2.)  With the finely spaced data we are working with 
at present – grid spacing 0.1 degrees, this changes the numbers at only the 0.01% level.  Doing 
this would presumably have a bigger effect with more coarsely spaced data. 

2) If we have a cross-polar map to go with this co-polar one, then we should include the 
polarization efficiency.  This is most simply done by summing the total power in the cross-polar 
pattern and applying the relevant normalization.  (I don’t at present understand how the 
patterns are normalized in the NSI data.)  The combination of spill-over and polarization is then 
found from: 

Eta_spill+pol  =  Σsec |Eco|2  /  { Σall |Eco|2 + Σall |Ecross|2 }  

Note that by if we want to have the spill-over and polarisations as separate items, then 
according to TICRA’s formulation we should proceed by: 

Eta_spill-over  =  { Σsec |Eco|2 + Σsec |Ecross|2 } / { Σall |Eco|2 + Σall |Ecross|2 }  and then 

Eta_polarization =  Σsec |Eco|2  /  { Σsec |Eco|2 + Σsec |Ecross|2 }  

The alternative is to work only with the co-polar pattern in estimating the spill and make a 
separate estimate of Eta_polarization using the whole pattern:  

Eta_spill-over  =  Σsec |Eco|2  /  Σall |Eco|2  and then   

Eta_polarization =  Σall |Eco|2  /  { Σall |Eco|2 + Σall |Ecross|2 } . 

The product of the two, i.e. Eta_spill+pol, will still be the same even though the individual 
numbers will be slightly different.  Since both the spill-over and the cross polar loss end up on 
the sky and both are small there is no practical effect on the estimated performance. 



3) Calculate the “amplitude” efficiency1.  This is the ratio of the aperture efficiency that would be 
obtained with this amplitude illumination (and no phase errors) to that which would be obtained 
with a uniform illumination.  This comes out to be: 

 Eta_amplitude  =   ( Σ m|E| )2 / ( Σ m|E|2 . Σ m ) 

where I have put the mask in explicitly because one does have to be a bit careful if one uses 
anything other than 0 and 1. 

One can also do things like fit a Gaussian and find how wide that is (for comparison with theory) 
or find the edge taper.  For the first of these I simply found the values of rG and AG that minimize 
the sum of squares of the quantity m|E|2 – m[AGexp(-(r /rG)2]2.   (Note that the mask is included 
so the fit is only to the power on the subreflector.  Instead of minimizing the differences in 
power one could use the amplitudes – it isn’t clear which is more relevant.)  For the second I 
just averaged the amplitude of the data points for which |r - rs| is less than the grid spacing.  
The actual edge illumination is found to be substantially lower than that of the fitted Gaussian, 
e.g. 2 to 3 dB lower, which is what we expect from the optical design.  

4) Calculate the Phase Efficiency.  This is where take account of any phase errors in the 
pattern.  Since we are calculating the aperture efficiency we need to add up the field over the 
aperture first and then square it.  We can write: 

 Eta_phase  =   | Σ mE ) |2   /  ( Σ m|E| )2  =  [ Σ mE cos(φerr ) ]2  /  ( Σ m|E| )2 

Here the relevant phase is φerr = φmeasured – φfit  where φfit is a simple function to take account 
of the fact that the actual phase centre of the receiver is not exactly at the point (0,0,0) as 
assumed.  

To see the correct form of φfit one can write down the change in path p for a signal travelling in 
the direction (u,v) resulting from moving the phase centre to (Δx,Δy,Δz).  This is:  

 p  =  – Δx sin u – Δy sin v  – Δz cos u cos v 

The phase is then φfit = k.p = 2πcp / f  where k is the wave-number, c is the speed of light and 
f is the frequency used in the measurement. 

One could in fact use the trig formulae above, but it is clear that a fit of the form φfit = A u + B v  
+ C r 2 + D is adequate for the small-angle approximation that we are making.  I have done this 
and then made the connection with the phase centre offsets by Δx = –A/k , Δy = –B/k and Δz = 
2C/k, making the appropriate allowance for units, i.e. degrees/radians, metres/mms, etc. I think 
that these are the correct signs for a “natural” set of coordinates, but whether or not they 
actually give the right answers will of course depend on what conventions have been used in 
things like the phase measurement, the coordinates of the scanner and the signs used in the 
FT.  I suspect that this can only easily be resolved by experiment – e.g. taking one set of data 
and then shifting the position of the source by a known amount in x, y and z and taking another 
set.  

The constant term D presumably has no practical use.  In fact we can eliminate the need for the 
term D by summing the cos and sin components and including them both, i.e.  

Eta_phase  =   { [ Σ mE cos(φerr ) ]2 +  [ Σ mE sin(φerr ) ]2 }  /  ( Σ m|E| )2  .  

In that case one could just fit for the three parameters A, B and C.   
At this point we need to decide whether the u and v in the expression above should be the 
original coordinates (u,v) in the reference frame aligned with the antenna, or the modified ones 
(u1,v1) taken with respect to the nominal “pointing”.  I think we should use the latter.  The main 
reason for this is that we have a large uncertainty in Δz.  This is a result of the fact that the slow 
f-ratio of 8 means that it takes a big change in z to produce a significant amount of curvature.  If 

                                                 
1 I have adopted the terminology from the TICRA report ALMA-80.04.00.00-026-A-REP section 5.1.  I myself 
would have called this the “taper” efficiency or perhaps the “illumination” efficiency.  



we use (u,v) the coupling between the terms in the fit means that any error in Δz feeds through 
into errors in Δx and Δy.  Using u1 and v1 means that we obtain (Δx1,Δy1,Δz1), i.e. we measure 
the offsets in a frame with z1 along the beam and x1 and y1 perpendicular to it.  This is also 
good because Δx1 and Δy1 are in fact the right quantities to use in finding the corresponding 
shifts of the beam on the sky.  To do this, simply multiply them by the “plate scale”, which is 
2.148 arcsec/mm for the 96m focal length of the ALMA 12m antennas. 

Since what we want to know is the efficiency at the peak of the beam, it is clear that the fit 
should be done by maximizing the phase efficiency.  (In fact I minimized 1 – eta_phase.)  The 
problem is non-linear and the measured phase is often “wrapped”, so minimizing is φerr

2 is not a 
good thing to try.  When maximizing the phase efficiency the wrapping can still be a problem, 
but this is solved by starting with a more restricted region at the middle of the beam to get a first 
guess and then enlarging it to the whole of the subreflector.  In all the data I have worked with 
so far, make a first attempt with rs set to 2 degrees and then increasing it to 3.58 degrees and 
solving again was sufficient to get to a correct solution.  In almost all of those, the correct 
solutions gave phase efficiencies above 99% whereas the local false maxima were much lower, 
so it is easy to see when one has gone wrong even without graphics. 

The total predicted aperture efficiency (assuming a perfect antenna) is of course the product of 
the four individual ones: 

 Eta_aperture  =  Eta_spill . Eta_pol . Eta_amp . Eta_phase  

 

I think this list – the efficiencies, the moments and the offset (Δx,Δy,Δz) of the phase centre – 
includes all the important quantitative information, but there is of course a lot more to be 
learned from plots of the data, both what is originally recorded in the near-field and the far-field 
patterns and including both phase and amplitude.  In general I suppose that, for the far-field 
phase, the most useful thing would be to plot the phase after subtracting the model derived 
above. 
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